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Abstract

Recently, increasing evidence suggests that fMRI signals in white matter (WM), conventionally 

ignored as nuisance, are robustly detectable using appropriate processing methods and are 

related to neural activity, while changes in WM with aging and degeneration are also well 

documented. These findings suggest variations in patterns of BOLD signals in WM should be 

investigated. However, existing fMRI analysis tools, which were designed for processing gray 

matter signals, are not well suited for large-scale processing of WM signals in fMRI data. 

We developed an automatic pipeline for high-performance preprocessing of fMRI images with 

emphasis on quantifying changes in BOLD signals in WM in an aging population. At the image 

processing level, the pipeline integrated existing software modules with fine parameter tunings and 

modifications to better extract weaker WM signals. The preprocessing results primarily included 

whole-brain time-courses, functional connectivity, maps and tissue masks in a common space. 

At the job execution level, this pipeline exploited a local XNAT to store datasets and results, 

while using DAX tool to automatic distribute batch jobs that run on high-performance computing 

clusters. Through the pipeline, 5,034 fMRI/T1 scans were preprocessed. The intraclass correlation 

coefficient (ICC) of test-retest experiment based on the preprocessed data is 0.52 – 0.86 (N=1000), 

indicating a high reliability of our pipeline, comparable to previously reported ICC in gray matter 

experiments. This preprocessing pipeline highly facilitates our future analyses on WM functional 

alterations in aging and may be of benefit to a larger community interested in WM fMRI studies.
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1. INTRODUCTION

The majority of conventional functional MRI (fMRI) studies have focused on neural activity 

in gray matter (GM) while ignoring the blood oxygenation level dependent (BOLD) signal 

in white matter (WM), at times even considering the WM signal as a nuisance regressor. 

Recently, a growing body of evidence has demonstrated that BOLD signals in WM, although 

weaker, are reliably detectable and related to neural activity; moreover, local signal changes 

and inter-regional correlations within WM can be robustly measured with appropriate 

methods1–6. These findings stimulate the demand for more elaborate studies of BOLD 

signals in WM in different clinical and developmental populations7,8.

Structural deteriorations in WM have been consistently found in aging and Alzheimer’s 

disease (AD) populations9,10; however, the age- or AD- related alterations in WM BOLD 

signals measured with fMRI are barely reported7, especially in large-scale analyses. 

Fortunately, increasingly abundant databases for both longitudinal and cross-sectional 

analyses on aging and AD are available, including, but not limited to, the Alzheimer’s 

Disease Neuroimaging Initiative (ADNI), Baltimore Longitudinal Study of Aging (BLSA), 

and Open Access Series of Imaging Studies (OASIS), which provide the data basis for 

investigations of how WM function alters with aging of human brain and progression of AD.

We developed an automatic pipeline to preprocess fMRI images of whole brains with an 

emphasis on WM in aging populations, aiming to prepare for succeeding large-scale WM-

related fMRI analyses including detection of BOLD signals, feature extraction, classification 

and statistical analyses. We executed the pipeline to complete pre-processing of over 5,000 

fMRI scans acquired from multiple aging and AD databases. Based on a subset of the 

pre-processed data, we conducted a test-retest experiment to evaluate the reproducibility of 

the proposed pipeline.

2. METHODS

2.1 Data

T1-weighted (T1w) images and resting state fMRI (rsfMRI) images were downloaded 

from existing databases: ADNI (stages 2 and 3, https://adni.loni.usc.edu), BLSA (https://

www.blsa.nih.gov) and OASIS (stage 3, https://www.oasis-brains.org) whose images were 

acquired with relatively consistent imaging protocols. Those downloaded images in DICOM 

format were converted into Nifti files using dcm2nii. All the Nifti images and the 

corresponding JSON files were curated, organized and stored on the Vanderbilt University 

Institute of Imaging Science - eXtensible Neuroimaging Archive Toolkit (VUIIS-XNAT11, 

https://xnat4.vandyxnat.org).
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2.2 Core Routine for Preprocessing

The core routine for the rsfMRI/T1 preprocessing, coded in MATLAB language, is 

graphically shown in Fig. 1. Briefly, the rsfMRI images were corrected for slice timing 

and head motion, followed by regressing out 24 motion-related parameters12 and the 

mean cerebrospinal fluid (CSF) signal. The resulting rsfMRI data were detrended and 

temporally filtered with passband frequency spanning from 0.01 to 0.1Hz. Furthermore, 

whole-brain maps of amplitude of low-frequency fluctuation (ALFF13), fractional ALFF 

(fALFF14), and regional homogeneity (ReHo15) were calculated in individual spaces. All 

these steps were implemented using modules in Data Processing Assistant for Resting-State 

fMRI (DPARSF16), an SPM-based toolbox. Regarding corresponding T1 images, tissue 

probability maps (TPM) of GM, WM and CSF were segmented using the Computational 

Anatomy Toolbox (CAT1217). To facilitate future cross-sectional multi-purpose analyses, 

the detrended rsfMRI, filtered rsfMRI, whole-brain maps and T1-based TPMs were all 

spatially normalized into MNI space using co-registration and normalization functions in 

CAT12. Lastly, the functional connectivity (FC) matrix between predefined WM bundles 

and GM parcels was computed based on the filtered signals in MNI space using homemade 

MATLAB functions7. Several abovementioned steps in the routine are detailed as below.

To correct slice-dependent delays of BOLD signals that stem from 2D fMRI acquisitions, 

slice-timing information of fMRI images was hard-coded in the routine (for BLSA) or 

automatically acquired from JSON files (for ADNI2&3 and OASIS-3) and a summary 

spreadsheet (for ADNI2&3) provided by the databases. For the fMRI images acquired with 

multi-band sequences, the slice timing corrections were skipped since the short TRs (0.6–

0.7s) in the multi-band acquisition leads to tolerable delays of signals.

In this research, both GM and WM are the compartments of interest, so signals in only 

CSF are regarded as nuisance regressors. Using a common approach, the CSF region 

was segmented at the first place and the mean time-course within the CSF mask was 

extracted and regressed out in a general linear model. Notably, partial volume effects are 

potentially severe at both the peripheral CSF boundary (adjacent to GM) and on the border 

of ventricular CSF (adjacent to WM), especially considering that WM signals are more 

vulnerable to the influence of regression than GM signals due to their lower amplitude, so 

it is important to conservatively choose the CSF voxels for the regression. To this end, the 

CSF TMP was thresholded at a high value 0.99 and the resulting mask was eroded iteratively 

until the volume of ventricular CSF was less than 7cm3.

It has been demonstrated that aging and AD populations tend to have ventricular 

enlargements due to brain tissue atrophy18, which compromises the accuracy of spatial 

normalizations especially for the WM around the ventricles. We integrated normalization 

module in CAT12 into our pipeline to pursue acceptable accuracy and compatibility with our 

routine.

2.3 Automation for Large-scale Batch Processing

The core preprocessing routine was encapsulated as a singularity container (called a 

“spider”) and executed within the Distributed Automation for XNAT (DAX19,20, https://
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github.com/VUIIS/dax) service that was triggered by REDCap21 and automated distribution 

of computation from the VUIIS-XNAT to the high-performance computing clusters provided 

by the Vanderbilt Advanced Computing Center for Research and Education (ACCRE). This 

automation workflow is summarized in Fig. 2. Each job runs the preprocessing routine for 

one dataset which includes all the rsfMRI images (1–6 runs) acquired for one subject in one 

visit. The multiple rsfMRI images in the same dataset were processed one by one in the 

same job.

2.4 Quality Control (QC)

All the results were downloaded from XNAT to a local workstation for quality control (QC). 

Whether the preprocessing results could be accepted for further analyses depended on the 

following criteria. First, the core preprocessing routine was fully executed, that is, all the 

preprocessed results were successfully generated. Second, the translations and rotations of 

head motion during fMRI scan must be less than 2 mm and 2 degrees, respectively. Third, 

the spatial normalization was acceptable by an expert’s visual inspection.

2.5 Test-Retest Reliability

The datasets with two fMRI scans acquired in the same visit from OASIS-3 were selected 

for the test-retest experiment (N=1000). The first scan and second scan were preprocessed 

separately and assigned to the test and retest groups, respectively. We calculated the FC 

matrix based on the preprocessed rsfMRI data. The FC values were the Pearson’s correlation 

coefficients (CC) between mean time-courses of 48 WM bundles and 82 GM parcels defined 

by JHU’s white matter atlas22 and PickAtlas23. To measure the test-retest reliability, the 

Pearson’s CC and interclass correlation coefficient (ICC)24 between FCs of test and retest 

groups were calculated for each WM-GM pair (or WM-WM) pair.

3. RESULTS

Through the automatic pipeline, 5,034 fMRI/T1 scans archived on VUIIS-XNAT were 

preprocessed. The time of job execution for one rsfMRI scan increases with the number of 

voxels in a 4D rsfMRI image (Fig. 3).

Figure 4 shows a comparison of the mean WM-GM FC matrices (N=30 from all the three 

databases) computed based on preprocessed time-courses using pipelines without and with 

iterative erosions on CSF extraction for nuisance regression-out step. Without erosion, the 

CSF mask (Fig. 4A) included large areas around the brain where the signals tended to be 

contaminated by GM signals, which led to over-controlling for the signal of interests, as 

shown by lower WM-GM FC values (Fig. 4C). The eroded CSF mask contained voxels only 

totally inside ventricles (Fig. 4B), which gave rise to the correction of the FC matrix (Fig. 

4D).

Figure 5 presents an example of spatial normalization accomplished in our pipeline. The 

significantly enlarged ventricle in the individual space (Fig.5AC) was transformed into MNI 

space with a large shrinkage (Fig. 5BD).
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Based on the QC criteria illustrated in the methods section, approximately 85% preprocessed 

results were accepted for future WM-related analysis. 0.8% were rejected duo to job 

failure (no TR, incomplete image, etc.), 14% due to large head motion, and 0.2% due to 

questionable normalization, wherein only job execution and normalization were directly 

related to the performance of the proposed pipeline.

Figure 6 exhibits the test-retest reliability. The mean WM-GM (or WM-WM) FC matrix of 

the test group (Fig. 6A or 6C) appears highly similar to the mean matrix of the retest group 

(Fig. 6B or 6D). In particular, the Pearson’s CC of all the FC values between the two mean 

matrices is higher than 0.99 (p << 0.01). Regarding the rest-retest reliability, Pearson’s CC 

across 1000 datasets ranged from 0.35 to 0.78 (Fig. 6E and 6G) and the ICC ranged from 

0.52 to 0.88 (Fig. 6F and 6H).

4. CONCLUSION AND DISCUSSION

This paper describes an automatic pipeline to preprocess rsfMRI images with emphasis on 

WM BOLD signals in aging populations. The pipeline was executed on 5,034 fMRI scans 

with high QC acceptance. The test-retest ICC of WM-GM and WM-WM FC is comparable 

with previously reported ICC of GM-GM FC25, suggesting our pipeline is highly reliable.
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Fig. 1. 
Workflow of rsfMRI/T1 image preprocessing routine.
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Fig. 2. 
Workflow of automatic pipeline for batch preprocessing images. The circled numbers in the 

workflow chart indicate the temporal order of the operations.
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Fig. 3. 
Time of job execution vs. numbers of voxels in fMRI image (N=40). Each box included 10 

datasets that were randomly selected from one of the 4 groups.
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Fig. 4. 
CSF masks (in red; overlaid on CSF tissue possibility maps) obtained before (A) and after 

(B) iterative erosions for one subject in individual space and the mean WM-GM functional 

connectivity matrices (N=30) calculated based on the preprocessed time-courses using pre- 

and post-eroded CSF masks in nuisance regression step (C, D).
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Fig. 5. 
One example of spatial normalization result. (A, C) T1 and fMRI image of an elderly subject 

in the individual space; (B, D) Normalized T1 and fMRI in MNI space. The originally 

enlarged ventricle shrank properly during spatial normalization using CAT12.
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Fig. 6. 
Mean WM-GM and WM-WM functional connectivity matrices of test and retest groups 

(A-D), and the test-retest reliability measures: Pearson’s correlation coefficient (E, G) and 

intraclass correlation coefficient (F, H) (N=1000).
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